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GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this
translation were extracted from the best quality copy available.
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Software for Numerical Calculation of Two-dimensional /129
Nonstationary Fluid Elasticity and Plasticity Problems-
Qin Meng-zhao (Computing Center, Academia Sinica)
: Xie Chung-sheng and Lian De-shou (The Third Chemical
9 "~ Institute, Xian)
Tan Qing-ming and Lin Xiao-pin (Institute of Mechanics,
Academia Sinica)

Abstract

It is very difficult to standardize programs in ﬁathematical
physics.

" *received on August 18, 1981

1) In addition, comrades Liu Zhiping and Li Yingtao of the
computing center, Gu Peizi, Wu Zhiyuan, Xiao Zuoshi and Xu
Feng of the third chemical engineering institute, and Zhou

. | Xiaowei of Shanxi Qinghua Electrical Machine Institute also

) Y participated in this work.
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However, it is not possible to compile an application software or /130
program for a specific type of problem. We primarily referred to
the "HELP Code"[1]&to compile a LTDL progradfﬁaﬂln BCY language.
It is capable of solving plasticity and elasticity problems of a
two dimensional nonstationary fluid (planar or axisymmetry
problems), including multi-materials (metals and non-metals). A
great deal of calculation was performed to solve problems such as
metal projectile penetration into steel target, high speed
collision, surface explosion of high energy explosive, spherical
explosion, collision of two rods, etc. Very useful results were
obtained.

This paper 4fif/describeé$he capabilities and focal points
of this software.), In the first section, we will introduce the
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fundamentals of thiis software, i.e. program modulation based on
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split operator method. In the second section, the key of
software design ~ calculation of mixed cell flow - is described.
The third section describes the determination of the problem,
i.e. setting up the region and boundary. The fourth section
discusses techniques to divide meshes. Energy verification is
introduced in section five. Several examples and figures are
. shown in section six.

§1. Split Operator Method - Modulation of Numerical Calculation

In order to compile a software for a specific type of

physical problem which is affected by many factors, the split

. operator method may be used in approximation. The effect of
several factors is split into the superposition of effects of
several single factors. A numerical calculation program based on the
split factor method is modular. A new physical problem may be
calculated by suitably selecting the relevant operators
(corresponding to several modules) and to match them with
boundary conditions and region of interest.

The split operator method was initially used to lower the
number of dimensions. For example, it can reduce a three-
dimensional problem to three one-dimensional problems, i.e.

& ~L(xy22) - a=L, L, L., "-®,

Moreover, the split operator-method can be applied to different
physical effects. For instance, the N-S equation can be considered
as the superposition of the inviscous operator-L1 and viscous
operator LZ’ i.e.

&=L,'L =,
Similarly, the plasticity and elasticity operator of a fluid may
be split into the pressure effect operator L1, stress effect
operator L3, and the transport effect operator L3, i.e.

m=~L,-L,-L,-wm,

Each operator is separated to become independent modules when the
numerical calculation program is compiled. For instance, the
LTDL program was compiled based on this principle. This ‘
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program 1is very flexible. For example, a fluld can be calculated

by shutting off program modules corresponding to L3 in LTDL. If
there 1s only one fluld material and it includes a free boundary,
i.e. the FLIC method[2’3], then all modules corresponding to L

L2 and L3 are used, which is the so-called HELPEl] method.

1’

§2. Key of Software Design - Mixed Cell Flow Calculation

The most complex portion of the software to calculate
plasticlty and elasticity of two dimensional nonstationary fluids
1s mixed cell flow calculation (cells at the interface of
materials). The key is to determine the rules to calculate the /131
area of material interface which cuts the Euler mesh. Obviously,
the direction of flow, the shape of interface, the number of
interfaces 1n a section cell can vary widely. To use a set of
rules to calculate the area where the interface cuts into a cell,
the density of the transport mesh and the transport rate at the
interface will enable us to calculate the mass, momentum and
energy transport between a mixed cell and 1ts neighbors. Then,
the mechanical parameters of a mixed cell at any time can be
calculated by using laws of conservation of mass, momentum and
energy. The logic is very complicated and includes the following steps:

1. First, the interface of materials 1s defined.
Initially, a set of massless tracing points (their coordinates
are expressed by the lattice coordinates). These points are
labelled so that the material is always on the left side of any
two nelghboring points. The polnts at the interface coincide and
move in opposite directions. The position of a moving point can
be determined by a weighted mesh speed area calculation. The
broken line between two neighboring points is the interface.

2. The area under which the interface intersects n sides of
a lattice is calculated according to the following three
situations:

1) The interface only intersects a side of the lattice once.

In Figure 1, the interface EBCDF between materials (1) and
(2) intersects with a side of lattice K once. The area 1is
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calculated by linear interpolation. The intersect E between. the
interface and the top slde of cell K is calculated from the
coordinates of two nelghboring points on the top edge of cell

K. Then, based on the rule that the material 1s always on the left
of the line connecting two neighboring points, we can then determine
that the area under which material (1) intersects with the top

side of cell K 1s the convolution of AE. The area under which
material (2) intersects with the top side of cell K is the
convolution of EF.

i1) The interface intersects the lattice several times.

In Figure 1, the interface of materials (1) and (2)
intersects with the right side of lattice K three times. The
area of intersection 1s obtained by adding the area of each
intersection and by comparing that area with the entire area of
cell K. Specifically, method i) is used along the direction of
the tracing points of the interface of material (1) to first
calculate the area BA and then the second area CH. Furthermore,
CH is added to BA. If BA + CH 1s less than AH, then the sum
remains unchanged. Finally, the area of the third intersection
DA 1s calculated and added to BA and CH. If BA + CH + DH > AH,
then AH is subtracted from the sum to obtain BA + DC, which 1is
the area of three intersections between interface (1) and the
right side of cell K. The derivatlon for n intersections can be
obtained 1in analogy.

Figure 1
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1ii) There is no intersection between the iaterface and n
sides of the lattice

In Figure 1, the interface of materials (1) and (2) does not
intersect the bottom and left sides of cell K. From the figure
we know that the area of intersection between the interface of
material (1) and the left and bottom sides of cell K is zero.
That of the interface of material (2) is the entire cell. This
is achieved by '"pre-set" (interface entering cell K) and 're-set"
(interface leaving cell K) in the program. Before we describe
this method, let us first introduce the four directions
connecting the tracing points on the top and right sides of
lattice K (See Figure 2).

EJ) (41
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Figure 2

(1) entering cell K, leaving cell KR.

(2) leaving cell K, entering cell KR.:

(3) entering cell K, leaving cell KA.

(4) leaving cell K, entering cell KA.

"Pre~set'" rules. When the interface of a material
intersects with cell K (on the top or right side) n times (n21),
if the area of intersection with cell K is less than the total
area of the whole cell, other sides of cell K will not be ''pre-
set'. Otherwise, other sides of the cell are pre-set clockwise
starting from the intersect until reaching the side of
intersection again.

P S T Sut
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""Re~-set' rules. When a material interface intersects n
times (n21) with a side of cell K (top or right) and leaves cell
K, if the cumulated area of intersection is less than the total
area, then other sides of cell K will not be re-set. Otherwise,
it will be re-set clockwise from the intersect. The partial area
of other side is zero until the interface intersects with the lattice
side.

Let us use Figure 1 to explain this situation. If we scan
along the direction of tracing points for material (1), when the
line connecting two such points for material (1) intersects with
the top of cell K once, then the right, bottom and left sides of
cell K are pre-set to the total area according to the pre-set
rule. When the interface of material (1) intersects with the
right side of cell K (at B) and leaves cell K, the left side is
re-set to zero area. Because the top side of cell K already
intersects with the interface of material (1), therefore, it is
not re-set again. When the interface of material (1) intersects
with the right side of cell K three times (at points B and C)
before entering cell K, because the cumulative area is smaller
than the total area to the right of cell K, then the bottom and
left sides are ''re-set' to the total area. When the interface of
material (1) intersects with the right side of cell K three times
(at points B, C and D), because the cumulative area is larger
than the total area to the right of cell K, then the bottom and
left sides are ''re-set'" to zero. This appears to be correct from
Figure 1. Similar "pre-set" and 're-set' rules may be used to
determine that the area of intersection between the interface of
material (2) and the bottom and left sides of cell K is the total
area.

In summary, based on the direction of the tracing points of
the 'pre-set' and ''re-set' rules, we can calculate any partial
area of intersection between an interface and a side of the
lattice.
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§3. Determination of the Problem, Region and Boundary Condition

The LTDL program is capable of calculating mutual
interaction among various materials. A material may also include
other types of materials (distributed in different regions). The
shape of the material may be spherical, hemispherical,
cylindrical and conical, as well as their combinations. However,
they must be axisymmetric or planar. The boundary conditions
include symmetric axis, rigid boundary, transport boundary, free
boundary and interfacial boundary. With the exception of
transport surface and symmetric axis, other interfaces have
massless tracing points.

' Let us assume that the area of calculation is the

7 rectangular region ABCD on the (r, Z) surface in a cylindrical
coordinate, as shown in Figure 3. Initially, the boundaries of
. material blocks (1), (2) and (3) are marked by massless points.
Thus, the lattice of calculation may he a pure cell of a single
material or may contain two or three mixed materials. Initial
values of eight mechanical parameters such as u (velocity
component in r-direction), v (velocity component in Z-direction),
e (specific internal energy), p (density), Sppr 5720 Spz (stress
components) and p (pressure) are given as the initial condition.
Thus, based on the problem (including the initial condition of
the material), shape, boundary condition, equation of state and
strength formula, the software can be rationally used to perform
the corresponding calculation. In addition to the eight
parameters and the dynamic boundary of the material, it is also
necessary to provide strength, temperature, positive stress and
strain rate.
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The determination of area of calculation and boundary type
can be--explained with the following example.
1. Axial Collision of Two Semi-infinite Metallic Bodies

e /133
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In reality, it is an axial one-dimensional problem and the
area of calculation is ABCD (Figure 4). AB, BF, FC and CD are
transport boundaries. AED is the axis of symmetry. There is no
need for tracing points. EF is the interface between blocks (1)
and (2) which requires tracing points.
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2. Axial Collision of Two Finite Thickness Infinite Width
Materials

This is also a one-dimensional axial problem. The area of
calculation is GHJI (Figure 5). AB and CD are free boundaries.
EF is an interface. They all need tracing points. BF and FC are
transport boundaries and GAEDI is the axis of symmetry.

3. Axial Collision of Two Finite Thickness and Width
Materials

The area of calculation of this two-dimensional axisymmetric
problem is GHJI (Figure 6). AB, BF, FC and CD are free
boundaries. EF is an interface. They should have tracing
points. AED is the axis of symmetry. '

4. High Speed Collision of Copper Sphere with a Semi-
infinite Body (Figure 7) '

Because of symmetry, it is only necessary to calculate half
of the area (Figure 8). Because the target is a semi-infinite
body. Therefore, CD and DB are transport boundaries.AB and AHG
are free boundaries. CAGE is the axis of symmetry. The area of
calculation is CDFE,
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Figure 7 Figure 8

5. Jet Penetrating Steel Target

If the target has a finite thickness, then the back surface
of the target CD is a free boundary. CD is a transport boundary
if the target is infinitely thick. GB is a free boundary. Let
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;ﬁ us assume that the jet is infinitely long, then EH is a transport
boundary and GH is a free boundary. AG is an interface and IDAE
X is the axis of symmetry. When DC and CB are free surfaces, the
. area of calculation is IJKE. When DC and CB are transport
. surfaces, the area of calculation is DCFE.
= 6. Surface Explosion of High Energy Explosive /134
- Let us assume that there is a high energy explosive at GFED
N on. the surface of a solid body. ABCEFG is a solid. Outside is
- the atmosphere. Then, it is necessary to make AB and BC be
- transport surfaces, CD be a free surface, GFED be an interface
- and AGDH be the axis of symmetry.
5
: z
- ! J z
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D 4 3
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1 E :
G 3 2
N P - ] D c
N ¢ ex
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‘  § JF ] %* , H s
: Figure 9 Figure 10
. 1. solid
2. air
. §4. Expansion of Area of Calculation - Techniques for Lattice
" Reconfiguration

oA’

The special feature of a nonstationary motion is that the
pattern of motion varies with time. However, due to limited
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computer storage space, the number of Euler lattices cannot be
too many. After a certain time, the physical picture has filled
the entire area of calculation. Then, lattices can be combined
by reconfiguration to expand the space of calculation. Lattice
combination can be done in one or two directions. For example,
the program is calculated to some extent, perturbation may have
already affected all the cells. Thus, the original 100 x 50
cells are consolidated into 50 x 25 or 100 x 25 cells. Thus, 3/4
or 1/2 of the storage space can be liberated to extend the area
of calculation.

The mechanical parameters, positions of tracing points at
the interface, positions of lattice lines and cell sizes must be
redetermined after reconfiguration. The calculation can be
performed in four steps:

1. Calculate the position of each lattice line, the
coordinate of each tracing point and the axial and radial
dimensions of each lattice.

2. Calculate mechanical parameters in reconfigured cells.
Let us assume that cells L and £ are combined into cell K. The
principle of recombination is as follows: the mass, axial and
radial velocity, and specific internal energy in cell K are
calculated from the conservation of mass, momentum and energy in
cells L and M. The stress derivation of cell K is calculated by
weighted mass average of cells L and M. If the combined cell is
a mixed cell, then the mass, velocity and specific internal
energy of the cell are obtained by laws of conservation. The
density of each material in cell K can be obtained by weighted
density mass of the same method in cells L and M.

3. New interface and center tracing points are added to the
new lattice in order to calculate the position of the lattice line
and the size of the cell. In addition, mechanical parameters in
the new cells are defined by those in the boundary cells.

4, Based on the mixed cell pressure iteration principle
(see reference [1] for details) and equation of state, the

A

pressure of each cell (pure and mixed) is caiculated. Finally, /135

the time interval is recalculated.

11

“J~f~f5(‘8%ﬂ\f\#%f%8%J%{=¢~f§<~r¢#?f*f a~"a§r§i%c\f\aﬁi;;g §f§f§f§“;“{“~f_. O

Ll bu




278 R A A A

'l ‘I .l _‘l

'

In regard to the treatment of a free boundary, the technique
is shown in detail in reference [5].

§5. Energy Verification

A stationary problem is often associated with iteration.
Therefore, some local error will not affect the entire picture.
At best, a few more iterations are needed. However, the problem
of nonstationary calculation is different. It is necessary to
check for energy conservation at each level (each time interval)
for every cell. Otherwise, the result cannot be trusted.

Initially, the total energy of the system ETH is calculated
according to the lattice number. The theoretical energy ETH* of
the system at the nth level is obtained by adding to or
subtracting from ETH with the energy input (work done by the
outsidé) or energy output (work done by the system) across the
transport boundary in a time interval At. The total energy at
the nth level is ESUM. It is required that the relative error
should be within the range DMIN, i.e.

ETH — ESUM | < pMiN,
ETH‘
This formula must be satisfied to demonstrate that the
calculation is correct. Otherwise, it has problems and the
calculation is terminated.

If this energy verification is used for each cell, the

requirement is even more rigorous.

§6. Examples of Numerical Calculation

1. Jet Penetrating Steel Target Plate

Initial conditions are: target radius 17.44mm, thickness
infinite (actual thickness is 18.49mm), Pt = 7.85g/cm*, p = latm,
e%0.6369426 x 10%ergs/g, u = v = 0, Jet (copper) radius is 1mm.
The jet is infinitely long (8mm in calculation). p3 = 8,60g/cm® ,

p = latm, e3 = 0,5813980 x 10°ergs/g, u = 0, v = v} = 850m/s.

12
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Figufe 11. Jet Penetration of Steel Plate Ended at t = 2 s and

Stationary Penetration Began’

1. Jjet
2. steel
2. Coppy Ball Colliding with Steel Target at 2km/sec.
Figures 8, 12 and 13 show the external shape at t = 0,
0.12247 and 0.4487 microseconds,

3. Spherical Explosion in Vacuum[6]

Figures 14 and 15 show the external profile at t = 0 and 0.3

usec, respectively.
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Figure 12

1. n =40
2. t = 0.12247usec

Figure 14

i %

‘Figure 13

1. n= 121
2. t = 0.4487usec

Figure 15
1« T = 0.3usec
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Figure 16
1. T = 70usec
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Figure 18

1. explosive
2. charge mask
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_Figure 17

1. T = 0,4601usec

N

Figure 19. Shapes and Posi-
tions of Explosion
Product and Charge
Mask at t =6.468usec

1. t = 6.468usec
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i Figure 20. Penetration of Shield in 5usec

? 4, Surface Explosion of High Energy Explosive

| Figure 10 shows the profile at t = Q0. Figure 16 is the

; pattern at 70us. The expansion of gas explosive products can be
< seen in Figure 16.

e 5. Collision of Two Rods /137
: Figures 6 and 17 are the profiles at t = 0 and 0.4601us,

- respectively. rsl
. 6. Calculation of Large Conical Angle Tumbling Projectile

-

; Figures 18 and 19 are the profiles at t = 0 and 6.486us,

;I respectively.

f : 7. Calculation of Cylindrical Steel Projectile Hitting

- Steel Target at 900m/s £ 77

Figure 20 is the profile at t = 5ys.
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